How to Install and Uninstall r-cran-matchit Package on Ubuntu 20.10 (Groovy Gorilla)
Last updated: January 11,2025
1. Install "r-cran-matchit" package
Here is a brief guide to show you how to install r-cran-matchit on Ubuntu 20.10 (Groovy Gorilla)
$
sudo apt update
Copied
$
sudo apt install
r-cran-matchit
Copied
2. Uninstall "r-cran-matchit" package
This guide covers the steps necessary to uninstall r-cran-matchit on Ubuntu 20.10 (Groovy Gorilla):
$
sudo apt remove
r-cran-matchit
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the r-cran-matchit package on Ubuntu 20.10 (Groovy Gorilla)
Package: r-cran-matchit
Architecture: all
Version: 3.0.2-5build1
Priority: optional
Section: universe/math
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian R Packages Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 508
Depends: r-base-core (>= 4.0.0.20200528-1), r-api-4.0, r-cran-mass, r-cran-matching
Recommends: r-cran-testthat, r-cran-rgenoud
Suggests: r-cran-nnet, r-cran-rpart, r-cran-mgcv, r-cran-whatif
Filename: pool/universe/r/r-cran-matchit/r-cran-matchit_3.0.2-5build1_all.deb
Size: 450808
MD5sum: f3cf7af470dd20f64b2666bdb547083d
SHA1: c08d7d2f3a0212f06957836060b09a9a1653514d
SHA256: 08949726db87c7586f5ee3224b2f278de8c759beb4d600186edcd5d10975f066
SHA512: 7816ee3e07a6fd1471db189089f272cd8f5e71dc520b4c5496ab49c0d3840c372950bd6dfaa9b3544f27f0e124a73ffd7279e6856ff6d9ed32b8b3832df9a1e7
Homepage: https://cran.r-project.org/package=MatchIt
Description-en: GNU R package of nonparametric matching methods
MatchIt implements the suggestions of Ho, Imai, King, and Stuart
(2004) for improving parametric statistical models by preprocessing
data with nonparametric matching methods.
.
MatchIt implements a wide range of sophisticated matching methods,
making it possible to greatly reduce the dependence of causal
inferences on hard-to-justify, but commonly made, statistical
modeling assumptions. The software also easily fits into existing
research practices since, after preprocessing with MatchIt,
researchers can use whatever parametric model they would have used
without MatchIt, but produce inferences with substantially more
robustness and less sensitivity to modeling assumptions. MatchIt is
an R program, and also works seamlessly within Zelig.
Description-md5: eb38c5b814371a9c56e064b45c858371
Architecture: all
Version: 3.0.2-5build1
Priority: optional
Section: universe/math
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian R Packages Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 508
Depends: r-base-core (>= 4.0.0.20200528-1), r-api-4.0, r-cran-mass, r-cran-matching
Recommends: r-cran-testthat, r-cran-rgenoud
Suggests: r-cran-nnet, r-cran-rpart, r-cran-mgcv, r-cran-whatif
Filename: pool/universe/r/r-cran-matchit/r-cran-matchit_3.0.2-5build1_all.deb
Size: 450808
MD5sum: f3cf7af470dd20f64b2666bdb547083d
SHA1: c08d7d2f3a0212f06957836060b09a9a1653514d
SHA256: 08949726db87c7586f5ee3224b2f278de8c759beb4d600186edcd5d10975f066
SHA512: 7816ee3e07a6fd1471db189089f272cd8f5e71dc520b4c5496ab49c0d3840c372950bd6dfaa9b3544f27f0e124a73ffd7279e6856ff6d9ed32b8b3832df9a1e7
Homepage: https://cran.r-project.org/package=MatchIt
Description-en: GNU R package of nonparametric matching methods
MatchIt implements the suggestions of Ho, Imai, King, and Stuart
(2004) for improving parametric statistical models by preprocessing
data with nonparametric matching methods.
.
MatchIt implements a wide range of sophisticated matching methods,
making it possible to greatly reduce the dependence of causal
inferences on hard-to-justify, but commonly made, statistical
modeling assumptions. The software also easily fits into existing
research practices since, after preprocessing with MatchIt,
researchers can use whatever parametric model they would have used
without MatchIt, but produce inferences with substantially more
robustness and less sensitivity to modeling assumptions. MatchIt is
an R program, and also works seamlessly within Zelig.
Description-md5: eb38c5b814371a9c56e064b45c858371