How to Install and Uninstall gmp-ecm Package on Ubuntu 21.10 (Impish Indri)
Last updated: December 23,2024
1. Install "gmp-ecm" package
Please follow the step by step instructions below to install gmp-ecm on Ubuntu 21.10 (Impish Indri)
$
sudo apt update
Copied
$
sudo apt install
gmp-ecm
Copied
2. Uninstall "gmp-ecm" package
In this section, we are going to explain the necessary steps to uninstall gmp-ecm on Ubuntu 21.10 (Impish Indri):
$
sudo apt remove
gmp-ecm
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the gmp-ecm package on Ubuntu 21.10 (Impish Indri)
Package: gmp-ecm
Architecture: amd64
Version: 7.0.4+ds-5
Multi-Arch: foreign
Priority: optional
Section: universe/math
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Science Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 311
Depends: libc6 (>= 2.7), libecm1, libgmp10 (>= 2:6.1)
Breaks: ecm (<< 1.00-2)
Replaces: ecm (<< 1.00-2)
Filename: pool/universe/g/gmp-ecm/gmp-ecm_7.0.4+ds-5_amd64.deb
Size: 108004
MD5sum: 8bd8884f8044dd1a7e20a3e4623e2f44
SHA1: b181455f3f241417255406badf2abff51d0cd848
SHA256: 8cd05639d45c315f8448d8c5789476227a4795e8df92191edfbe6db51df5c388
SHA512: 99202c216ca653f77f12e55e5698e111b96daf3e29f2985aa2b9ee1c9a3e72b5c3b3481eac30a43e8f4739898545f65d89115f1874da5d2f8f2e35b32bca3d8e
Homepage: https://ecm.gforge.inria.fr/
Description-en: Factor integers using the Elliptic Curve Method
gmp-ecm is a free implementation of the Elliptic Curve Method (ECM)
for integer factorization.
.
The original purpose of the ECMNET project was to make Richard Brent's
prediction true, i.e. to find a factor of 50 digits or more by
ECM. This goal was attained on September 14, 1998, when Conrad Curry
found a 53-digit factor of 2^677-1 c150 using George Woltman's mprime
program. The new goal of ECMNET is now to find other large factors by
ecm, mainly by contributing to the Cunningham project, most likely the
longest, ongoing computational project in history according to Bob
Silverman. A new record was set by Nik Lygeros and Michel Mizony, who
found in December 1999 a prime factor of 54 digits using GMP-ECM.
.
See http://www.loria.fr/~zimmerma/records/ecmnet.html for more
information about ecmnet.
.
This package provides the command line utility.
Description-md5: aa8a1ad2382ce8ce2808bef77751b023
Architecture: amd64
Version: 7.0.4+ds-5
Multi-Arch: foreign
Priority: optional
Section: universe/math
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Science Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 311
Depends: libc6 (>= 2.7), libecm1, libgmp10 (>= 2:6.1)
Breaks: ecm (<< 1.00-2)
Replaces: ecm (<< 1.00-2)
Filename: pool/universe/g/gmp-ecm/gmp-ecm_7.0.4+ds-5_amd64.deb
Size: 108004
MD5sum: 8bd8884f8044dd1a7e20a3e4623e2f44
SHA1: b181455f3f241417255406badf2abff51d0cd848
SHA256: 8cd05639d45c315f8448d8c5789476227a4795e8df92191edfbe6db51df5c388
SHA512: 99202c216ca653f77f12e55e5698e111b96daf3e29f2985aa2b9ee1c9a3e72b5c3b3481eac30a43e8f4739898545f65d89115f1874da5d2f8f2e35b32bca3d8e
Homepage: https://ecm.gforge.inria.fr/
Description-en: Factor integers using the Elliptic Curve Method
gmp-ecm is a free implementation of the Elliptic Curve Method (ECM)
for integer factorization.
.
The original purpose of the ECMNET project was to make Richard Brent's
prediction true, i.e. to find a factor of 50 digits or more by
ECM. This goal was attained on September 14, 1998, when Conrad Curry
found a 53-digit factor of 2^677-1 c150 using George Woltman's mprime
program. The new goal of ECMNET is now to find other large factors by
ecm, mainly by contributing to the Cunningham project, most likely the
longest, ongoing computational project in history according to Bob
Silverman. A new record was set by Nik Lygeros and Michel Mizony, who
found in December 1999 a prime factor of 54 digits using GMP-ECM.
.
See http://www.loria.fr/~zimmerma/records/ecmnet.html for more
information about ecmnet.
.
This package provides the command line utility.
Description-md5: aa8a1ad2382ce8ce2808bef77751b023