How to Install and Uninstall python3-freecontact Package on Ubuntu 21.10 (Impish Indri)
Last updated: November 07,2024
1. Install "python3-freecontact" package
This guide covers the steps necessary to install python3-freecontact on Ubuntu 21.10 (Impish Indri)
$
sudo apt update
Copied
$
sudo apt install
python3-freecontact
Copied
2. Uninstall "python3-freecontact" package
In this section, we are going to explain the necessary steps to uninstall python3-freecontact on Ubuntu 21.10 (Impish Indri):
$
sudo apt remove
python3-freecontact
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the python3-freecontact package on Ubuntu 21.10 (Impish Indri)
Package: python3-freecontact
Architecture: amd64
Version: 1.1-5build5
Priority: optional
Section: universe/python
Source: python-freecontact
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Med Packaging Team
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 252
Depends: python3 (<< 3.10), python3 (>= 3.9~), libboost-python1.74.0 (>= 1.74.0), libboost-python1.74.0-py39, libc6 (>= 2.14), libfreecontact0v5 (>= 1.0.21), libgcc-s1 (>= 3.0), libstdc++6 (>= 5.2)
Filename: pool/universe/p/python-freecontact/python3-freecontact_1.1-5build5_amd64.deb
Size: 73340
MD5sum: cf294794a56e44e1a1f9075729c01227
SHA1: a3b02dee4aac438af10ec59b60e0739d73a4b5d7
SHA256: ff9c5acb15b26a90b0fe03851f7276d740116d1a011b348c7000c9c06e727c09
SHA512: 1a8300eb06f971ad4719257f30bdc67f50d0c9927d1c2750836762a98602ccce5f750edd0df2c467897dbee3e57776525fe0adbad675d2a2a3c3e66231269b99
Homepage: https://rostlab.org/owiki/index.php/FreeContact
Description-en: fast protein contact predictor - binding for Python3
FreeContact is a protein residue contact predictor optimized for speed.
Its input is a multiple sequence alignment. FreeContact can function as an
accelerated drop-in for the published contact predictors
EVfold-mfDCA of DS. Marks (2011) and
PSICOV of D. Jones (2011).
.
FreeContact is accelerated by a combination of vector instructions, multiple
threads, and faster implementation of key parts.
Depending on the alignment, 8-fold or higher speedups are possible.
.
A sufficiently large alignment is required for meaningful results.
As a minimum, an alignment with an effective (after-weighting) sequence count
bigger than the length of the query sequence should be used. Alignments with
tens of thousands of (effective) sequences are considered good input.
.
jackhmmer(1) from the hmmer package, or hhblits(1) from hhsuite
can be used to generate the alignments, for example.
.
This package contains the Python3 binding.
Description-md5: cff3ff1f1e4977970446ae50e7cd5aad
Architecture: amd64
Version: 1.1-5build5
Priority: optional
Section: universe/python
Source: python-freecontact
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Med Packaging Team
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 252
Depends: python3 (<< 3.10), python3 (>= 3.9~), libboost-python1.74.0 (>= 1.74.0), libboost-python1.74.0-py39, libc6 (>= 2.14), libfreecontact0v5 (>= 1.0.21), libgcc-s1 (>= 3.0), libstdc++6 (>= 5.2)
Filename: pool/universe/p/python-freecontact/python3-freecontact_1.1-5build5_amd64.deb
Size: 73340
MD5sum: cf294794a56e44e1a1f9075729c01227
SHA1: a3b02dee4aac438af10ec59b60e0739d73a4b5d7
SHA256: ff9c5acb15b26a90b0fe03851f7276d740116d1a011b348c7000c9c06e727c09
SHA512: 1a8300eb06f971ad4719257f30bdc67f50d0c9927d1c2750836762a98602ccce5f750edd0df2c467897dbee3e57776525fe0adbad675d2a2a3c3e66231269b99
Homepage: https://rostlab.org/owiki/index.php/FreeContact
Description-en: fast protein contact predictor - binding for Python3
FreeContact is a protein residue contact predictor optimized for speed.
Its input is a multiple sequence alignment. FreeContact can function as an
accelerated drop-in for the published contact predictors
EVfold-mfDCA of DS. Marks (2011) and
PSICOV of D. Jones (2011).
.
FreeContact is accelerated by a combination of vector instructions, multiple
threads, and faster implementation of key parts.
Depending on the alignment, 8-fold or higher speedups are possible.
.
A sufficiently large alignment is required for meaningful results.
As a minimum, an alignment with an effective (after-weighting) sequence count
bigger than the length of the query sequence should be used. Alignments with
tens of thousands of (effective) sequences are considered good input.
.
jackhmmer(1) from the hmmer package, or hhblits(1) from hhsuite
can be used to generate the alignments, for example.
.
This package contains the Python3 binding.
Description-md5: cff3ff1f1e4977970446ae50e7cd5aad