How to Install and Uninstall python3-mlpy Package on Ubuntu 21.10 (Impish Indri)
Last updated: January 11,2025
1. Install "python3-mlpy" package
This tutorial shows how to install python3-mlpy on Ubuntu 21.10 (Impish Indri)
$
sudo apt update
Copied
$
sudo apt install
python3-mlpy
Copied
2. Uninstall "python3-mlpy" package
Learn how to uninstall python3-mlpy on Ubuntu 21.10 (Impish Indri):
$
sudo apt remove
python3-mlpy
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the python3-mlpy package on Ubuntu 21.10 (Impish Indri)
Package: python3-mlpy
Architecture: all
Version: 3.5.0+ds-1.2build2
Priority: optional
Section: universe/python
Source: mlpy
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Science Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 194
Depends: python3-numpy, python3-scipy, python3:any, python3, python3-mlpy-lib (>= 3.5.0+ds-1.2build2)
Suggests: python3-mvpa
Filename: pool/universe/m/mlpy/python3-mlpy_3.5.0+ds-1.2build2_all.deb
Size: 31124
MD5sum: 52c6c76c439a09b640cb2b456ee890d9
SHA1: 9c2ca74cde06d35845f5bcd2d4bd6117c1709659
SHA256: 3e1d8bc6f957f36aad32f968a7c4cbf7ce7d64ca89db97b3d1f5909a41fa3bc1
SHA512: 9835d1f4437e219974f1f50534379fdf3f3b1a116dd323a761d91bca93dda06a3dd28dc02f2b9ac3273c3ce9887c8a89506f26a86cfa54ed0b47e16103d8a0f2
Homepage: https://mlpy.fbk.eu/
Description-en: high-performance Python package for predictive modeling
mlpy provides high level procedures that support, with few lines of
code, the design of rich Data Analysis Protocols (DAPs) for
preprocessing, clustering, predictive classification and feature
selection. Methods are available for feature weighting and ranking,
data resampling, error evaluation and experiment landscaping.
.
mlpy includes: SVM (Support Vector Machine), KNN (K Nearest
Neighbor), FDA, SRDA, PDA, DLDA (Fisher, Spectral Regression,
Penalized, Diagonal Linear Discriminant Analysis) for classification
and feature weighting, I-RELIEF, DWT and FSSun for feature weighting,
RFE (Recursive Feature Elimination) and RFS (Recursive Forward
Selection) for feature ranking, DWT, UWT, CWT (Discrete, Undecimated,
Continuous Wavelet Transform), KNN imputing, DTW (Dynamic Time
Warping), Hierarchical Clustering, k-medoids, Resampling Methods,
Metric Functions, Canberra indicators.
Description-md5: 8aa02b039fb76de9e138e063b8e10fcd
Architecture: all
Version: 3.5.0+ds-1.2build2
Priority: optional
Section: universe/python
Source: mlpy
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Science Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 194
Depends: python3-numpy, python3-scipy, python3:any, python3, python3-mlpy-lib (>= 3.5.0+ds-1.2build2)
Suggests: python3-mvpa
Filename: pool/universe/m/mlpy/python3-mlpy_3.5.0+ds-1.2build2_all.deb
Size: 31124
MD5sum: 52c6c76c439a09b640cb2b456ee890d9
SHA1: 9c2ca74cde06d35845f5bcd2d4bd6117c1709659
SHA256: 3e1d8bc6f957f36aad32f968a7c4cbf7ce7d64ca89db97b3d1f5909a41fa3bc1
SHA512: 9835d1f4437e219974f1f50534379fdf3f3b1a116dd323a761d91bca93dda06a3dd28dc02f2b9ac3273c3ce9887c8a89506f26a86cfa54ed0b47e16103d8a0f2
Homepage: https://mlpy.fbk.eu/
Description-en: high-performance Python package for predictive modeling
mlpy provides high level procedures that support, with few lines of
code, the design of rich Data Analysis Protocols (DAPs) for
preprocessing, clustering, predictive classification and feature
selection. Methods are available for feature weighting and ranking,
data resampling, error evaluation and experiment landscaping.
.
mlpy includes: SVM (Support Vector Machine), KNN (K Nearest
Neighbor), FDA, SRDA, PDA, DLDA (Fisher, Spectral Regression,
Penalized, Diagonal Linear Discriminant Analysis) for classification
and feature weighting, I-RELIEF, DWT and FSSun for feature weighting,
RFE (Recursive Feature Elimination) and RFS (Recursive Forward
Selection) for feature ranking, DWT, UWT, CWT (Discrete, Undecimated,
Continuous Wavelet Transform), KNN imputing, DTW (Dynamic Time
Warping), Hierarchical Clustering, k-medoids, Resampling Methods,
Metric Functions, Canberra indicators.
Description-md5: 8aa02b039fb76de9e138e063b8e10fcd