How to Install and Uninstall python3-pycuda Package on Ubuntu 21.10 (Impish Indri)

Last updated: November 26,2024

1. Install "python3-pycuda" package

Please follow the guidelines below to install python3-pycuda on Ubuntu 21.10 (Impish Indri)

$ sudo apt update $ sudo apt install python3-pycuda

2. Uninstall "python3-pycuda" package

In this section, we are going to explain the necessary steps to uninstall python3-pycuda on Ubuntu 21.10 (Impish Indri):

$ sudo apt remove python3-pycuda $ sudo apt autoclean && sudo apt autoremove

3. Information about the python3-pycuda package on Ubuntu 21.10 (Impish Indri)

Package: python3-pycuda
Architecture: amd64
Version: 2020.1~dfsg1-1build1
Priority: optional
Section: multiverse/python
Source: pycuda
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian NVIDIA Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 1598
Depends: nvidia-cuda-toolkit, python3-appdirs (>= 1.4.0), python3-decorator (>= 3.2.0), python3-numpy (>= 1:1.16.0~rc1), python3-pytools, python3 (<< 3.10), python3 (>= 3.9~), python3-mako, python3-numpy-abi9, python3:any, libboost-python1.74.0 (>= 1.74.0), libboost-python1.74.0-py39, libboost-thread1.74.0 (>= 1.74.0), libc6 (>= 2.14), libcurand10, libgcc-s1 (>= 3.3.1), libnvidia-compute-465, libstdc++6 (>= 5.2)
Recommends: python-pycuda-doc
Suggests: python3-matplotlib, python3-opengl, python3-pycuda-dbg, python3-pytest
Filename: pool/multiverse/p/pycuda/python3-pycuda_2020.1~dfsg1-1build1_amd64.deb
Size: 290192
MD5sum: 56cceb4d76564a4b3461a7ff24960d44
SHA1: f3c6fbc07d9ac130d1196a11dd4d50f87b88b646
SHA256: 3247c5a79a72e2091cf28cb1719117d5b1e21d628c894289723b71febd6990cf
SHA512: 71ef07b5ccc75424d901b2c92c773789bfeeea62a37ed01e1df9a7003e5cc17883285a7e4d0b045de0521184aeb9413a13b2fc0dcdd97acb86e72438bd185af1
Homepage: http://mathema.tician.de/software/pycuda
Description-en: Python 3 module to access Nvidia‘s CUDA parallel computation API
PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
Several wrappers of the CUDA API already exist–so what’s so special about
PyCUDA?
* Object cleanup tied to lifetime of objects. This idiom, often called
RAII in C++, makes it much easier to write correct, leak- and crash-free
code. PyCUDA knows about dependencies, too, so (for example) it won’t
detach from a context before all memory allocated in it is also freed.
* Convenience. Abstractions like pycuda.driver.SourceModule and
pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
with Nvidia’s C-based runtime.
* Completeness. PyCUDA puts the full power of CUDA’s driver API at your
disposal, if you wish.
* Automatic Error Checking. All CUDA errors are automatically translated
into Python exceptions.
* Speed. PyCUDA’s base layer is written in C++, so all the niceties
above are virtually free.
* Helpful Documentation.
.
This package contains Python 3 modules.
Description-md5: 4f446cb70e3ba6723eaae62a94efb36c