How to Install and Uninstall libfaiss-dev Package on Ubuntu 22.10 (Kinetic Kudu)
Last updated: January 24,2025
1. Install "libfaiss-dev" package
This is a short guide on how to install libfaiss-dev on Ubuntu 22.10 (Kinetic Kudu)
$
sudo apt update
Copied
$
sudo apt install
libfaiss-dev
Copied
2. Uninstall "libfaiss-dev" package
Please follow the steps below to uninstall libfaiss-dev on Ubuntu 22.10 (Kinetic Kudu):
$
sudo apt remove
libfaiss-dev
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the libfaiss-dev package on Ubuntu 22.10 (Kinetic Kudu)
Package: libfaiss-dev
Architecture: amd64
Version: 1.7.2-7
Multi-Arch: same
Priority: optional
Section: universe/science
Source: faiss
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Deep Learning Team
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 6049
Depends: libblas-dev | libblas.so, liblapack-dev | liblapack.so
Filename: pool/universe/f/faiss/libfaiss-dev_1.7.2-7_amd64.deb
Size: 957992
MD5sum: 4cc8d0b3f84f56d03853c3a8608da994
SHA1: cd1241a5768bf7de65ea29dd91115fb8b86a7d19
SHA256: 1b939464cc2498b01fa78639d84f43bd3e25ee0c6488168b8a35f111e6d3d95b
SHA512: 74e1b46e63700d4e6caa84a75f412098c766296e325fc88645332df6a8a075dc3f4fbf3c8f6535136883b9c06c245a9c1fb0ea7a16212019b10987426b06d9ea
Homepage: https://github.com/facebookresearch/faiss
Description: efficient similarity search and clustering of dense vectors
Description-md5: 97a446d4f7c6eb17e90eec293f6aba51
Architecture: amd64
Version: 1.7.2-7
Multi-Arch: same
Priority: optional
Section: universe/science
Source: faiss
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Deep Learning Team
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 6049
Depends: libblas-dev | libblas.so, liblapack-dev | liblapack.so
Filename: pool/universe/f/faiss/libfaiss-dev_1.7.2-7_amd64.deb
Size: 957992
MD5sum: 4cc8d0b3f84f56d03853c3a8608da994
SHA1: cd1241a5768bf7de65ea29dd91115fb8b86a7d19
SHA256: 1b939464cc2498b01fa78639d84f43bd3e25ee0c6488168b8a35f111e6d3d95b
SHA512: 74e1b46e63700d4e6caa84a75f412098c766296e325fc88645332df6a8a075dc3f4fbf3c8f6535136883b9c06c245a9c1fb0ea7a16212019b10987426b06d9ea
Homepage: https://github.com/facebookresearch/faiss
Description: efficient similarity search and clustering of dense vectors
Description-md5: 97a446d4f7c6eb17e90eec293f6aba51