How to Install and Uninstall r-cran-rms Package on Ubuntu 16.04 LTS (Xenial Xerus)
Last updated: January 11,2025
1. Install "r-cran-rms" package
This tutorial shows how to install r-cran-rms on Ubuntu 16.04 LTS (Xenial Xerus)
$
sudo apt update
Copied
$
sudo apt install
r-cran-rms
Copied
2. Uninstall "r-cran-rms" package
In this section, we are going to explain the necessary steps to uninstall r-cran-rms on Ubuntu 16.04 LTS (Xenial Xerus):
$
sudo apt remove
r-cran-rms
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the r-cran-rms package on Ubuntu 16.04 LTS (Xenial Xerus)
Package: r-cran-rms
Priority: optional
Section: universe/gnu-r
Installed-Size: 1156
Maintainer: Ubuntu Developers
Original-Maintainer: Dirk Eddelbuettel
Architecture: amd64
Version: 4.4-1-1
Replaces: r-noncran-design
Depends: libc6 (>= 2.4), r-base-core (>= 3.2.3-1), r-api-3, r-cran-hmisc (>= 3.16-0), r-cran-survival (>= 2.36-3), r-cran-sparsem, r-cran-quantreg, r-cran-nlme, r-cran-rpart, r-cran-polspline, r-cran-multcomp, r-cran-foreign, r-cran-nnet, r-cran-ggplot2, r-cran-gridextra
Conflicts: r-noncran-design
Filename: pool/universe/r/r-cran-rms/r-cran-rms_4.4-1-1_amd64.deb
Size: 1055574
MD5sum: def01c0dc9d11b0c0f42ac20b7a447fa
SHA1: 2b53097e6995199834265168981faae2bc7d08fd
SHA256: b1efeb1e20affadfd19a39165f69cc14e2f704649c53ea94d25bf35775e9edbe
Description-en: GNU R regression modeling strategies by Frank Harrell
Regression modeling, testing, estimation, validation, graphics,
prediction, and typesetting by storing enhanced model design
attributes in the fit. rms is a collection of 229 functions that
assist with and streamline modeling. It also contains functions for
binary and ordinal logistic regression models and the Buckley-James
multiple regression model for right-censored responses, and implements
penalized maximum likelihood estimation for logistic and ordinary
linear models. rms works with almost any regression model, but it
was especially written to work with binary or ordinal logistic
regression, Cox regression, accelerated failure time models,
ordinary linear models, the Buckley-James model, generalized least
squares for serially or spatially correlated observations, generalized
linear models, and quantile regression.
.
See Frank Harrell (2001), Regression Modeling Strategies, Springer
Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
Description-md5: 9fe79ccc22f1a3025abc6da6b5e51bde
Homepage: http://biostat.mc.vanderbilt.edu/wiki/Main/Rrms
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Origin: Ubuntu
Priority: optional
Section: universe/gnu-r
Installed-Size: 1156
Maintainer: Ubuntu Developers
Original-Maintainer: Dirk Eddelbuettel
Architecture: amd64
Version: 4.4-1-1
Replaces: r-noncran-design
Depends: libc6 (>= 2.4), r-base-core (>= 3.2.3-1), r-api-3, r-cran-hmisc (>= 3.16-0), r-cran-survival (>= 2.36-3), r-cran-sparsem, r-cran-quantreg, r-cran-nlme, r-cran-rpart, r-cran-polspline, r-cran-multcomp, r-cran-foreign, r-cran-nnet, r-cran-ggplot2, r-cran-gridextra
Conflicts: r-noncran-design
Filename: pool/universe/r/r-cran-rms/r-cran-rms_4.4-1-1_amd64.deb
Size: 1055574
MD5sum: def01c0dc9d11b0c0f42ac20b7a447fa
SHA1: 2b53097e6995199834265168981faae2bc7d08fd
SHA256: b1efeb1e20affadfd19a39165f69cc14e2f704649c53ea94d25bf35775e9edbe
Description-en: GNU R regression modeling strategies by Frank Harrell
Regression modeling, testing, estimation, validation, graphics,
prediction, and typesetting by storing enhanced model design
attributes in the fit. rms is a collection of 229 functions that
assist with and streamline modeling. It also contains functions for
binary and ordinal logistic regression models and the Buckley-James
multiple regression model for right-censored responses, and implements
penalized maximum likelihood estimation for logistic and ordinary
linear models. rms works with almost any regression model, but it
was especially written to work with binary or ordinal logistic
regression, Cox regression, accelerated failure time models,
ordinary linear models, the Buckley-James model, generalized least
squares for serially or spatially correlated observations, generalized
linear models, and quantile regression.
.
See Frank Harrell (2001), Regression Modeling Strategies, Springer
Series in Statistics, as well as http://biostat.mc.vanderbilt.edu/Rrms.
Description-md5: 9fe79ccc22f1a3025abc6da6b5e51bde
Homepage: http://biostat.mc.vanderbilt.edu/wiki/Main/Rrms
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Origin: Ubuntu