How to Install and Uninstall libtensorflow_framework1 Package on openSUSE Leap
Last updated: December 24,2024
Deprecated! Installation of this package may no longer be supported.
1. Install "libtensorflow_framework1" package
Please follow the guidelines below to install libtensorflow_framework1 on openSUSE Leap
$
sudo zypper refresh
Copied
$
sudo zypper install
libtensorflow_framework1
Copied
2. Uninstall "libtensorflow_framework1" package
Please follow the guidelines below to uninstall libtensorflow_framework1 on openSUSE Leap:
$
sudo zypper remove
libtensorflow_framework1
Copied
3. Information about the libtensorflow_framework1 package on openSUSE Leap
Information for package libtensorflow_framework1:
-------------------------------------------------
Repository : Main Repository
Name : libtensorflow_framework1
Version : 1.15.4-bp153.1.74
Arch : x86_64
Vendor : openSUSE
Installed Size : 19,3 MiB
Installed : No
Status : not installed
Source package : tensorflow-1.15.4-bp153.1.74.src
Summary : Shared library for tensorflow
Description :
This open source software library for numerical computation is used for data
flow graphs. The graph nodes represent mathematical operations, while the graph
edges represent the multidimensional data arrays (tensors) that flow between
them. This flexible architecture enables you to deploy computation to one or
more CPUs in a desktop, server, or mobile device without rewriting code.
-------------------------------------------------
Repository : Main Repository
Name : libtensorflow_framework1
Version : 1.15.4-bp153.1.74
Arch : x86_64
Vendor : openSUSE
Installed Size : 19,3 MiB
Installed : No
Status : not installed
Source package : tensorflow-1.15.4-bp153.1.74.src
Summary : Shared library for tensorflow
Description :
This open source software library for numerical computation is used for data
flow graphs. The graph nodes represent mathematical operations, while the graph
edges represent the multidimensional data arrays (tensors) that flow between
them. This flexible architecture enables you to deploy computation to one or
more CPUs in a desktop, server, or mobile device without rewriting code.