How to Install and Uninstall python3-h5py-mpi-dbg Package on Ubuntu 21.10 (Impish Indri)
Last updated: November 21,2024
1. Install "python3-h5py-mpi-dbg" package
This tutorial shows how to install python3-h5py-mpi-dbg on Ubuntu 21.10 (Impish Indri)
$
sudo apt update
Copied
$
sudo apt install
python3-h5py-mpi-dbg
Copied
2. Uninstall "python3-h5py-mpi-dbg" package
This guide let you learn how to uninstall python3-h5py-mpi-dbg on Ubuntu 21.10 (Impish Indri):
$
sudo apt remove
python3-h5py-mpi-dbg
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the python3-h5py-mpi-dbg package on Ubuntu 21.10 (Impish Indri)
Package: python3-h5py-mpi-dbg
Architecture: amd64
Version: 2.10.0-9build2
Multi-Arch: same
Priority: optional
Section: universe/debug
Source: h5py
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Science Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 21429
Depends: python3-dbg (<< 3.10), python3-dbg (>= 3.9~), python3-numpy (>= 1:1.16.0~rc1), python3-numpy-abi9, libc6 (>= 2.14), libhdf5-openmpi-103-1 (>= 1.10.5), libhdf5-openmpi-hl-100 (>= 1.10.2), liblzf1 (>= 1.5), python3-h5py-mpi (= 2.10.0-9build2), python3-h5py-serial-dbg (= 2.10.0-9build2), python3-mpi4py-dbg, python3-numpy-dbg
Filename: pool/universe/h/h5py/python3-h5py-mpi-dbg_2.10.0-9build2_amd64.deb
Size: 6793968
MD5sum: bd389d8018829846c84d18b6d103f0da
SHA1: 1fbb90596f2f273ce9446ea80f54af20eb63351a
SHA256: f0434e2641d71bd8067062f34590180aba4d97060e02a875e57333f7ea7ebb1a
SHA512: 028123f846ff94a1c6bbb28e1acc71a490ac2dd12991f4747353c62713e84a568a86d67de393879345ceea917f27f08476392ef482074749bf24fc59efd90080
Homepage: https://www.h5py.org/
Description-en: debug extensions for h5py (Python 3 MPI)
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides the debug extensions for Python 3, built with
support for MPI (multiprocessor) jobs.
Description-md5: 4f781496ed73299e541ce2a111e975d5
Build-Ids: 0d8addc81d93345d65b58ce95cdf808f1d32059a 19f83b66335c49d0e2a1c81b224a50487d97c2aa 1f3a9264fbb5484524b8cba70f7649ec0d9548a5 319730c8aed9fbedb240647fb88e58ee430ee524 3ed6a76803628db042403748aa4dcea7eeb45847 54b34949a7bb2b49a3620db0b4afad80bb421dff 675de2b8edfa113ab4cf045ea59106829b1d1276 6d055e97c704eb464d4d5a34cafcd4ad3b37c402 6e69de181b4aeb3835e2e01ee196f8ce994edcad 71fa0b22c1a6c809298b00b59617884c82df6d42 94d7786209dc4639f9e4eddb340c1582fb8cce73 95f3994dcd03bb5cec75911fb489fdbf66fbeb1d a533e5f7ce04869e53012faaeae73d82024f781b b0579d28dc5c8e0dda0af66728202c0d41a32812 c84c73b54dd16e820fed96732ee05f218f571fe3 cc3033f4a4c57861d7e88c92546375c806314f4b d0b402f790713361763da9fe04308abefdcb5302 d61a543212127a381b87f507d8533464f666663b d7cffccf5d50c92529e8e6df13fc6bddc37b2627 d9354733077768ac21431ad6afa01ab97386a644 f2af3231715581903382499e00d75e1243d6686f fb102912c82ac8a00139492b7cc08c7dcc17f978 fe216ba907b6fe8bb7db86acc8157e51c2d720a0
Architecture: amd64
Version: 2.10.0-9build2
Multi-Arch: same
Priority: optional
Section: universe/debug
Source: h5py
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Science Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 21429
Depends: python3-dbg (<< 3.10), python3-dbg (>= 3.9~), python3-numpy (>= 1:1.16.0~rc1), python3-numpy-abi9, libc6 (>= 2.14), libhdf5-openmpi-103-1 (>= 1.10.5), libhdf5-openmpi-hl-100 (>= 1.10.2), liblzf1 (>= 1.5), python3-h5py-mpi (= 2.10.0-9build2), python3-h5py-serial-dbg (= 2.10.0-9build2), python3-mpi4py-dbg, python3-numpy-dbg
Filename: pool/universe/h/h5py/python3-h5py-mpi-dbg_2.10.0-9build2_amd64.deb
Size: 6793968
MD5sum: bd389d8018829846c84d18b6d103f0da
SHA1: 1fbb90596f2f273ce9446ea80f54af20eb63351a
SHA256: f0434e2641d71bd8067062f34590180aba4d97060e02a875e57333f7ea7ebb1a
SHA512: 028123f846ff94a1c6bbb28e1acc71a490ac2dd12991f4747353c62713e84a568a86d67de393879345ceea917f27f08476392ef482074749bf24fc59efd90080
Homepage: https://www.h5py.org/
Description-en: debug extensions for h5py (Python 3 MPI)
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides the debug extensions for Python 3, built with
support for MPI (multiprocessor) jobs.
Description-md5: 4f781496ed73299e541ce2a111e975d5
Build-Ids: 0d8addc81d93345d65b58ce95cdf808f1d32059a 19f83b66335c49d0e2a1c81b224a50487d97c2aa 1f3a9264fbb5484524b8cba70f7649ec0d9548a5 319730c8aed9fbedb240647fb88e58ee430ee524 3ed6a76803628db042403748aa4dcea7eeb45847 54b34949a7bb2b49a3620db0b4afad80bb421dff 675de2b8edfa113ab4cf045ea59106829b1d1276 6d055e97c704eb464d4d5a34cafcd4ad3b37c402 6e69de181b4aeb3835e2e01ee196f8ce994edcad 71fa0b22c1a6c809298b00b59617884c82df6d42 94d7786209dc4639f9e4eddb340c1582fb8cce73 95f3994dcd03bb5cec75911fb489fdbf66fbeb1d a533e5f7ce04869e53012faaeae73d82024f781b b0579d28dc5c8e0dda0af66728202c0d41a32812 c84c73b54dd16e820fed96732ee05f218f571fe3 cc3033f4a4c57861d7e88c92546375c806314f4b d0b402f790713361763da9fe04308abefdcb5302 d61a543212127a381b87f507d8533464f666663b d7cffccf5d50c92529e8e6df13fc6bddc37b2627 d9354733077768ac21431ad6afa01ab97386a644 f2af3231715581903382499e00d75e1243d6686f fb102912c82ac8a00139492b7cc08c7dcc17f978 fe216ba907b6fe8bb7db86acc8157e51c2d720a0