How to Install and Uninstall python3-h5py-serial-dbg Package on Ubuntu 21.10 (Impish Indri)
Last updated: January 11,2025
1. Install "python3-h5py-serial-dbg" package
This guide let you learn how to install python3-h5py-serial-dbg on Ubuntu 21.10 (Impish Indri)
$
sudo apt update
Copied
$
sudo apt install
python3-h5py-serial-dbg
Copied
2. Uninstall "python3-h5py-serial-dbg" package
Please follow the step by step instructions below to uninstall python3-h5py-serial-dbg on Ubuntu 21.10 (Impish Indri):
$
sudo apt remove
python3-h5py-serial-dbg
Copied
$
sudo apt autoclean && sudo apt autoremove
Copied
3. Information about the python3-h5py-serial-dbg package on Ubuntu 21.10 (Impish Indri)
Package: python3-h5py-serial-dbg
Architecture: amd64
Version: 2.10.0-9build2
Multi-Arch: same
Priority: optional
Section: universe/debug
Source: h5py
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Science Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 21294
Depends: python3-dbg (<< 3.10), python3-dbg (>= 3.9~), python3-numpy (>= 1:1.16.0~rc1), python3-numpy-abi9, libc6 (>= 2.14), libhdf5-103-1, libhdf5-hl-100, liblzf1 (>= 1.5), python3-h5py-serial (= 2.10.0-9build2), python3-numpy-dbg
Filename: pool/universe/h/h5py/python3-h5py-serial-dbg_2.10.0-9build2_amd64.deb
Size: 6744112
MD5sum: e2ceb91ea0ad26a1cc3d6beb248e1fcf
SHA1: 4d58deccfdbbc171460dd3e2b69fbd3a19052db5
SHA256: 9e15d141e5ff9f0ad7f602e11508225c0b6d889c1a139f8ade3462d5209d6bc5
SHA512: bdddfc839c64868fa0d023cb1b7ab1565e6bb736d116597dea7b67c226948bb0ede7cca059b3e80ff542406dc864748767ee50028502817244ad75963c06ef30
Homepage: https://www.h5py.org/
Description-en: debug extensions for h5py (Python 3 serial)
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides the debug extensions for Python 3, built for
serial (single processor) jobs.
Description-md5: 8b41766e9a0865e6e78235984d1967ca
Build-Ids: 04ee9242f93bb3969b06f9b2d29be79cedefe3b5 1c6c488105d67fc762c5b020a2bdf1589bc8fa48 26bfb7a925ddc9f3bf57fe8722eb3bd7812d230d 2a22273031daed7e921e47c115fd5ef42e0ca061 341e877015c3190b87fdc52eb6c19564c733ebc3 37c068fa2db9a06fa53a250d750855adc76680f2 393bd2d4e72c2f47f4a414b0d0f13d4a3576f773 3b900c770dfcf9959af415a6e4c9886164619c12 496ad7c8532a3637926896987dd44c5fc8d9e09b 58b7041bc8ad94a70e75cd943ed05130c7aa5ae6 64ba56a42aaf09e64c08fcbba66b1a360058cf1f 650cf5da303193331531541fbad7d355f7a352f3 6f766f82157711f15dcfa46535c279331602c692 7138296d3d2839caf1089bb6ce89e6e0402f791a 9598d09e7b62f24ae6f7acfc7e0316812bfef89f 9cfe569f1a6ea6f90eb5f44cd73f510f3f75f38b aa9170c5c0f0ed20b736d1303be65e8292618a01 ad822f6a8e85566486ef5601dd71b69bb5d9d3c6 afb19ce421dd5f6be22fed46af48c6b92785cabe b860ca2540a78063dce7d88cc7b6333f6fa2aa4d c30a20cbcaabbefe5de0ae28205973d8f320328d ccb99c916ddcc2c2ba9353df98e476ca64cd05f6 ff56ce9535e457f79d558a3a21651f930b1b1b9d
Architecture: amd64
Version: 2.10.0-9build2
Multi-Arch: same
Priority: optional
Section: universe/debug
Source: h5py
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian Science Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 21294
Depends: python3-dbg (<< 3.10), python3-dbg (>= 3.9~), python3-numpy (>= 1:1.16.0~rc1), python3-numpy-abi9, libc6 (>= 2.14), libhdf5-103-1, libhdf5-hl-100, liblzf1 (>= 1.5), python3-h5py-serial (= 2.10.0-9build2), python3-numpy-dbg
Filename: pool/universe/h/h5py/python3-h5py-serial-dbg_2.10.0-9build2_amd64.deb
Size: 6744112
MD5sum: e2ceb91ea0ad26a1cc3d6beb248e1fcf
SHA1: 4d58deccfdbbc171460dd3e2b69fbd3a19052db5
SHA256: 9e15d141e5ff9f0ad7f602e11508225c0b6d889c1a139f8ade3462d5209d6bc5
SHA512: bdddfc839c64868fa0d023cb1b7ab1565e6bb736d116597dea7b67c226948bb0ede7cca059b3e80ff542406dc864748767ee50028502817244ad75963c06ef30
Homepage: https://www.h5py.org/
Description-en: debug extensions for h5py (Python 3 serial)
HDF5 for Python (h5py) is a general-purpose Python interface to the
Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
scientific software library designed for the fast, flexible storage of
enormous amounts of data.
.
From a Python programmer's perspective, HDF5 provides a robust way to
store data, organized by name in a tree-like fashion. You can create
datasets (arrays on disk) hundreds of gigabytes in size, and perform
random-access I/O on desired sections. Datasets are organized in a
filesystem-like hierarchy using containers called "groups", and accessed
using the tradional POSIX /path/to/resource syntax.
.
H5py provides a simple, robust read/write interface to HDF5 data from
Python. Existing Python and Numpy concepts are used for the interface;
for example, datasets on disk are represented by a proxy class that
supports slicing, and has dtype and shape attributes. HDF5 groups are
presented using a dictionary metaphor, indexed by name.
.
This package provides the debug extensions for Python 3, built for
serial (single processor) jobs.
Description-md5: 8b41766e9a0865e6e78235984d1967ca
Build-Ids: 04ee9242f93bb3969b06f9b2d29be79cedefe3b5 1c6c488105d67fc762c5b020a2bdf1589bc8fa48 26bfb7a925ddc9f3bf57fe8722eb3bd7812d230d 2a22273031daed7e921e47c115fd5ef42e0ca061 341e877015c3190b87fdc52eb6c19564c733ebc3 37c068fa2db9a06fa53a250d750855adc76680f2 393bd2d4e72c2f47f4a414b0d0f13d4a3576f773 3b900c770dfcf9959af415a6e4c9886164619c12 496ad7c8532a3637926896987dd44c5fc8d9e09b 58b7041bc8ad94a70e75cd943ed05130c7aa5ae6 64ba56a42aaf09e64c08fcbba66b1a360058cf1f 650cf5da303193331531541fbad7d355f7a352f3 6f766f82157711f15dcfa46535c279331602c692 7138296d3d2839caf1089bb6ce89e6e0402f791a 9598d09e7b62f24ae6f7acfc7e0316812bfef89f 9cfe569f1a6ea6f90eb5f44cd73f510f3f75f38b aa9170c5c0f0ed20b736d1303be65e8292618a01 ad822f6a8e85566486ef5601dd71b69bb5d9d3c6 afb19ce421dd5f6be22fed46af48c6b92785cabe b860ca2540a78063dce7d88cc7b6333f6fa2aa4d c30a20cbcaabbefe5de0ae28205973d8f320328d ccb99c916ddcc2c2ba9353df98e476ca64cd05f6 ff56ce9535e457f79d558a3a21651f930b1b1b9d