How to Install and Uninstall r-bioc-gsva Package on Ubuntu 21.10 (Impish Indri)

Last updated: January 11,2025

1. Install "r-bioc-gsva" package

This is a short guide on how to install r-bioc-gsva on Ubuntu 21.10 (Impish Indri)

$ sudo apt update $ sudo apt install r-bioc-gsva

2. Uninstall "r-bioc-gsva" package

Please follow the instructions below to uninstall r-bioc-gsva on Ubuntu 21.10 (Impish Indri):

$ sudo apt remove r-bioc-gsva $ sudo apt autoclean && sudo apt autoremove

3. Information about the r-bioc-gsva package on Ubuntu 21.10 (Impish Indri)

Package: r-bioc-gsva
Architecture: amd64
Version: 1.38.2+ds-3
Priority: optional
Section: universe/gnu-r
Origin: Ubuntu
Maintainer: Ubuntu Developers
Original-Maintainer: Debian R Packages Maintainers
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 913
Depends: r-base-core (>= 4.0.4-1build1), r-api-4.0, r-api-bioc-3.12, r-bioc-biocgenerics, r-bioc-s4vectors, r-bioc-iranges, r-bioc-biobase, r-bioc-summarizedexperiment, r-bioc-gseabase, r-bioc-biocparallel, libc6 (>= 2.4)
Recommends: r-cran-runit, r-cran-fastmatch
Suggests: r-bioc-limma, r-cran-rcolorbrewer, r-bioc-genefilter, r-bioc-edger, r-cran-shiny, r-cran-shinythemes, r-cran-ggplot2, r-cran-data.table, r-cran-plotly
Filename: pool/universe/r/r-bioc-gsva/r-bioc-gsva_1.38.2+ds-3_amd64.deb
Size: 766152
MD5sum: 6160aeda2c6d08df59e15feaf029efb4
SHA1: 422c181df49df9be1303e2c26d4fdb3ed8a6ba61
SHA256: cbe57bfb72ccc796ca589bee14e2e1e59212fd4af7985f776f1931ef512a9e54
SHA512: ed9faa37e116605367c2de136be4fd132f2b8badc3e466a55fca44e803cb873da9da666c630582dac6ae92512ec1f66750a9854d7a1bed47e7aee34e36bbc0ff
Homepage: https://bioconductor.org/packages/GSVA/
Description-en: Gene Set Variation Analysis for microarray and RNA-seq data
Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised
method for estimating variation of gene set enrichment through the
samples of a expression data set. GSVA performs a change in coordinate
systems, transforming the data from a gene by sample matrix to a gene-
set by sample matrix, thereby allowing the evaluation of pathway
enrichment for each sample. This new matrix of GSVA enrichment scores
facilitates applying standard analytical methods like functional
enrichment, survival analysis, clustering, CNV-pathway analysis or cross-
tissue pathway analysis, in a pathway-centric manner.
Description-md5: e85ed23c3444b7c2da17d6196437f0f4